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Abstract 
This paper presents a new semi-supervised clustering 
framework to the recognition of heavily degraded charac-
ters in historical typewritten documents, where off-the-
shelf OCR typically fails. The constraints are generated 
using typographical (collection-independent) domain 
knowledge and are used to guide both sample (glyph set) 
partitioning and metric learning. Experimental results us-
ing simple features provide encouraging evidence that 
this approach can lead to significantly improved cluster-
ing results compared to simple K-Means clustering, as 
well as to clustering using a state-of-the art OCR engine. 

1 Introduction 

There is a considerable public, historical as well as politi-
cal interest in the analysis of large collections of 
administrative documents of the 20th century and their 
conversion into digital archives and libraries.  

The majority of office documents and official corre-
spondence of the 20th century are typewritten, a fact that 
introduces certain unique challenges to their recognition. 
First, in contrast to other printed documents, each indi-
vidual glyph (character) within a document may appear 
considerably stronger or more faint than its neighbours. 
This is in direct relation to both the amount of force used 
when pressing the corresponding key and to the condition 
of the actual striking head of the particular key.  

Second, many typewritten documents survive only as 
carbon copies of the originals, produced on a very thin 
paper (a.k.a. Japanese paper) which has prominent tex-
ture. Due to the mechanical nature of the typing process 
(the force from the typewriter key has to be transferred 
through the original paper and through the carbon sheet 
before a character is produced on the carbon copy) the 
characters on the carbon copy are usually blurred. 

Historical typewritten documents are also affected by 
problems of ageing and repeated use, manifesting them-

selves as discolouration, disintegration of document parts, 
stains, punch holes, tears, rust from paperclips etc. Exam-
ples of scanned carbon-copy historical typewritten 
material is shown in Figure 1. 

 

 
Fig 1. Examples of typewritten material used. 

As perhaps expected, state-of-the-art commercial OCR 
systems fail to recognise the majority of the characters in 
this document class (this empirical statement is experi-
mentally validated below). The main reasons are, the 
presence of background texture, faint characters that ap-
pear broken and blurred characters that are filled-in 
and/or touching with others. These are acknowledged 
challenges for any OCR system.  

There have been remarkably few reports in the litera-
ture related to the analysis of typewritten documents. 
Most approaches focus on pre-OCR enhancement of de-
graded typewritten characters. Cannon et al. [1] attempt 
to enhance only bilevel images and address artefacts that 
are of different nature than those found on degraded his-
torical documents. In terms of challenging historical 
documents, Antonacopoulos and Karatzas [2] presented a 
study of the effects of different binarisation techniques at 
different segmentation levels while Antonacopoulos and 
Casado Castilla [3] proposed a new text recovery ap-
proach for typewritten documents. Both of those 
approaches relied on commercial systems for character 
recognition. An exception is the experimental word-level 
approach developed based on the VIADOCS typewritten 
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index cards [4] which used special knowledge of the par-
ticular subject area (natural history taxonomies) and of 
the specific archival organisation of the index cards to 
generate candidates for recognition of word images. 

This paper proposes a new framework for recognizing 
particularly challenging collections of historical docu-
ments, such as typewritten documents of Word War II 
[5]. In addition to suffering from severe degradations (as 
mentioned earlier), such documents contain text (e.g. sur-
names with variable spellings) that can rarely be found in 
dictionaries, much less belong to a closed vocabulary set.  

The key concept of the new framework is the combina-
tion of collection-independent domain knowledge (such 
as typography conventions)  with human feedback in an 
iterative manner to gradually refine the system’s under-
standing of the unique characteristics of the specific 
document collections, finally leading to a collection-
dependent OCR engine.  

The main focus of this paper is the initial semi-
supervised clustering stage where a full partition of the 
samples (glyphs) is generated from a completely unla-
beled set of training glyph samples.  

The general concept, background and stages of the 
proposed framework are examined in more detail in Sec-
tion 2. The experimental process and corresponding 
results are presented and discussed in Section 3, while the 
general remarks of Section 4 conclude the paper. 

2 Iterative approach based on semi-
supervised clustering 

The system starts with a set of completely unlabeled train-
ing samples extracted from the collection, and clusters the 
samples in a semi-supervised setting. Constraints derived 
from largely collection-independent algorithms  are used 
to guide not only the partition of the sample space, but 
also the learning of collection-specific metrics. These 
clusters and metrics then serve as starting points in an it-
erative process, where at each step human feed back is 
used to generate new constraints, which are in turn used 
to modify cluster memberships as well as the metrics. At 
the end of this process, the system will not only have 
learned “pure” clusters from the training samples, but also 
appropriate metrics, both of which can then be used to 
create (train) a domain-specific OCR engine. 

2.1 Background 

Semi-supervised clustering refers to a group of method-
ologies that use incomplete class labels or pair-wise 
constraints on data samples to aid unsupervised cluster-
ing. It is the focus of many recent studies as it provides 
alternative ways to learn from large amounts of unlabeled 
data combined with limited labelled data. It also offers a 

convenient framework for incorporating potentially in-
complete domain knowledge in data exploration. 

The semi-supervision is typically provided in one of 
two forms, as class labels (seeds) [6,8], or pair-wise must-
link (ML) or cannot-link (CL) constraints [7,10]. Earlier 
approaches were purely constraint-based, where the labels 
or pair-wise constraints are used to guide the algorithm 
towards a partition that is most consistent with the given 
constraints [6,10]. Metric learning from constraints were 
later introduced, e.g. [11]. More recently, Bilenko et. al. 
presented an integrated constraints and metric learning 
approach, where the constraints are used to adjust both 
clustering assignments and metrics [7]. 

While there has been a large body of work on the de-
sign of semi-supervised clustering algorithms, relatively 
little study has been carried out on different constraint 
generation methodologies and their effectiveness in dif-
ferent applications [8,10]. Intuitively, for the constraints 
to help, they should encode information that is not readily 
extractable from the  basic features themselves. Such 
“side” information could come from human input 
(through limited manual labelling), or domain knowledge.  

2.2 Features 

Typewritten document images from World War II ar-
chives [5] are first binarised. In order to be able to make a 
baseline comparison with other approaches, no restoration 
[3] is attempted. The documents are then segmented down 
to glyph level.  

The glyphs are fed into a feature extraction method 
(new extension of [9]) that calculates expressive values to 
be used as input to the semi-supervised clustering. The re-
sult is one feature vector for each glyph which represents 
a number of geometrical characteristics, density informa-
tion, and localised features. Feature values currently used 
for glyphs are: width (normalised), height (normalised), 
width to height ratio, number of black pixels (normal-
ised), number of white pixels (normalised), black-to-white 
ratio, as well as the individual numbers of black pixels 
and black pixel densities in each of the nine rectangles re-
sulting from a regular 3×3 partition of a glyph.  

It should be noted that, in most cases, structural fea-
tures of printed characters cannot be used reliably due to 
the excessive amount of noisy pixels present e.g. strokes 
are wrongly connected or broken.  

2.3 Automated constraint generation 

Constraints need to be generated to inform the semi-
supervised clustering algorithm. It is crucial that con-
straints used in the learning process introduce as few 
errors as possible. In this particular case, domain knowl-
edge (related to typography) is used to automatically 
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generate reliable constraints. (i.e. identifying easily sepa-
rable features related to typical glyph characteristics).  

The rest of this section explains how cannot-link and 
must-link constraints are generated using specific reliable 
features to provide input to the semi-supervised clustering 
where all features mentioned in Section 2.2 are taken into 
account. Figure 2 illustrates the process.  
 

Decision Tree
(width, height)

Pattern Matching
(pixel based)

Semi-Supervised 
Clustering

(all features)

CL
Constraints

ML
Constraints

 
Fig. 2. Automated generation of CL and ML con-
straints for semi-supervised glyph clustering. 

2.3.1. Cannot-link  (CL) constraints. The basic re-
quirement on this type of constraints is that two glyphs 
marked as “cannot-link” have very high probability of be-
longing to different classes in the ground-truth. To 
establish CL constraints a relatively small number of su-
per-clusters can be produced which do not have to be 
pure with regard to the true glyph classes they contain. 
However, the intersection of the true classes between su-
per-clusters has to be small (the sets should ideally be 
disjoint). If, for example, super-cluster A contains “i”s 
and “l”s then a super-cluster B may contain “m”s and 
“w”s but should ideally not contain any single “i” or “l”. 

For our initial evaluation we used CL constraints based 
on the domain knowledge that characters with very dif-
ferent aspect ratios typically belong to different character 
classes. The constraints are calculated using a decision 
tree, operating only on glyph width and height. Glyphs in 
typewritten documents exhibit a typical characteristic 
graph for both width and height. While there is a  linear 
middle section in each graph (corresponding to glyphs 
which can be hardly distinguished using width and 
height) the two ranges on the left and right ends of the 
graph exhibit higher slope resulting from glyphs that are 
significantly different from the rest. Optimal thresholds 
(used by the decision tree) are set accordingly, to exclude 
glyphs of the linear part from the resulting super-clusters 
as they are likely to cause false CL constraints. 

This pre-clustering process produces four distinct su-
per-clusters and one cluster containing all uncertain 
glyphs: (i) narrow and short (e.g. “.”), (ii) narrow and 
tall (e.g. “l”), (iii) wide and short (e.g. “w”), (iv) wide and 
tall (e.g. “H”), and (v) otherwise (remaining cases where 
a reliable decision cannot be made). Pairs of glyphs be-
tween the different super-clusters (apart from cluster v) 
form the required CL pairs.  
 

2.3.2. Must-link (ML) constraints. This second type of 
constraints is used to signify glyphs of the same true 
class. The goal is therefore to find glyphs which defi-
nitely represent the same character or, in other words, to 
find absolutely pure clusters. This process does not neces-
sarily have to be extensive, as only a reasonable set of 
ML constraints is required.  

Automatic ML constraint generation is achieved by 
applying a very strict pre-clustering. The current method 
is based on vector quantisation with pixel-level pattern 
matching of glyph images as a similarity measure. Safe 
recognition of must-link candidates is possible with an al-
lowed error of less than 10% of the total number of pixels 
in a glyph. This way, only the visually most similar 
glyphs are grouped together (see Fig. 3) and the number 
of clusters is typically larger than the number of actual 
classes (some of them have to be merged in the course of 
the subsequent semi-supervised clustering).  
 

 
 

Fig. 3. Pre-clustering example result – clusters of 
similar glyphs then form ML constraints. 

2.4 Semi-supervised clustering approach 

The ML and CL constraints are incorporated into an itera-
tive clustering procedure using The Semi-supervised 
Clustering with Metric Learning (MPCK-Means) algo-
rithm developed by Bilenko et. al. [7]. MPCK-Means is 
particularly attractive for our application for several rea-
sons. First, it is a K-Means based algorithm and as such is 
highly scalable. Second, it adapts to the constraints 
through both cluster-assignments and metric learning. The 
latter aspect is important because different document col-
lections are expected to have different optimal metrics. 
Finally, it is able to learn individual metrics for each clus-
ter, allowing clusters of different shapes. This is desirable 
because features that are most discriminative for some 
characters could be significantly different than those for 
others. 

In MPCK-means, the Euclidean distance is parameter-
ized using a symmetric positive-definite matrix 

il
A  as 

follows: 

)()(||||
iiiili lil

T
liAli xAxx μμμ −−=−  
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where 
il

A  is the weight matrix for cluster il , and 
il

μ is 

the centroid of cluster il .  
The objective function that combines metric learning 

with pair-wise constraints is defined as: 
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Here M  is the set of must-link (ML) constraints, C  is 
the set of cannot-link (CL) constraints, I is the indicator 
function, ),( jiM xxF and ),( jiC xxF are constraint 
violation penalty terms defined using the distance be-
tween ix and jx , ijw is the weight for ML penalty and 

ijw is the weight for CL penalty. 
The algorithm locally minimizes the objective func-

tion by iterating through estimation (E) and maximization 
(M) steps. Constraints are utilized when assigning points 
to clusters, and the distance metric is adapted by re-
estimating the weight matrices 

il
A  during each iteration 

based on the current cluster assignments and constraint 
violations. For more details see [6]. 

3 Experiments 

Experiments were carried out using glyphs segmented 
from binarised historical typewritten documents (see Sec-
tion 2.2). The dataset contains 643 samples belonging to 
55 character classes. For validation purpose all samples 
were labelled using a semi-automated tool [9] which iden-
tifies glyph candidates on a page and also suggests groups 
of similar glyphs for more efficient labelling. A set of 11 
simple features such as width, height and percent of black 
pixels in 3x3 regions (see Section 2.2), and a fixed num-
ber of 55 clusters were used in all clustering experiments. 

 The main objective of the experiments is to investi-
gate the benefit of semi-supervised clustering under two 
inherent challenges of this particular application: 1) lim-
ited and potentially noisy constraints due to the poor 
quality of the original samples and 2) large number of 
clusters.  

In order to study the effect of the number of con-
straints and the trade-off between the number and quality 
of the constraints, we first generated the ML and CL sets 
using the automatically selected thresholds as described in 
Section 2.3, then varied the thresholds to generate sets 

with more or fewer constraints. The CL and ML con-
straints were evaluated separately, since they are 
generated through very different mechanisms and are ex-
pected to have different effects on clustering results. 

Each constraint set was fed to the MPCK-means algo-
rithm  with the default constraint weight of 1.0. Clustering 
results are evaluated using the widely used F-measure 
([7]). For comparison, we also generated clustering re-
sults using K-means and a state-of-art OCR engine, 
ABBYY FineReader 9, which in effect produces labelled 
clusters i.e. the recognised characters.  

The F-measures for these baseline methods are 0.581 
and 0.583, respectively. 
 
Table 1. Clustering Performance with ML con-
straints. 

 
Table 1 shows the results of applying ML constraint 

sets of varying sizes and accuracy, with ML3 (in bold) 
being the set generated using the automatically selected 
thresholds. As can be seen, the use of ML constraints 
leads to dramatic performance improvements over simple 
k-means as well as FineReader 9. The amount of im-
provement increases initially as the number of constraints 
increases. This trend continues even after errors are intro-
duced into the constraints with more relaxed thresholds. 
As expected, the performance eventually starts to drop as 
the negative effect of the wrong constraints outweighs the 
positive effect of the correct ones. We note that the “op-
erating range” for ML constraints is quite large - 
significant performance improvements can be observed 
for most of the sets. This is reassuring as it indicates that 
the system does not rely on a precisely determined set of 
thresholds in constraint generation. 

Table 2 shows the results from similar experiments for 
CL constraints, with CL3 (in bold) being the set generated 
with the thresholds described in Section 2.3.1. The gen-
eral movement of the performance with regard to the size 
and accuracy of the constraint sets is similar to that ob-
served for ML constraints. However, the CL constraints 
in general do not improve the performance much. In fact, 
there is an initial dip in the performance, and it only pulls 
ahead of the baseline for three of the constraint sets in the 
middle, before dropping again after a small increase in the 
number of wrong constraints. We conjecture that one pos-
sible reason for this behaviour could be that the current 

 # ML 
assignments 

# ML 
constraints 

# wrong 
constraints F-measure 

ML1 83 336 0 0.59 
ML2 128 406 4 0.632 
ML3 206 731 12 0.701 
ML4 268 981 33 0.701 
ML5 316 1566 153 0.693 
ML6 372 2062 180 0.678 
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metric-learning formulation in the MPCK-means algo-
rithm may not be well suited for the situation where there 
are a large number of clusters. 

 
Table 2. Clustering Performance with CL con-
straints. 

 
Finally, we ran a set of experiments on the combined 

effect of ML and CL constraints. While many ML/CL 
combinations could be made using the set of constraints 
listed in Table 1 and Table 2, for this initial study we 
simply used 6 sets generated using the most straightfor-
ward manner, by combining the ML and CL sets in order.  
Since ML clearly leads to more performance improve-
ments than CL constraints in the separate experiments, we 
skewed the combined set by using 1.0 as ML weights, and 
0.1 as CL weights. The results compared to the baselines 
are shown in Figure 4.  

4 Concluding remarks 

We have proposed a new framework for recognizing 
challenging collections of historical documents, and pre-
sented the implementation and evaluation of the first step 
within this framework - constraint based clustering of 
glyphs. The constraints are generated using collection-
independent domain knowledge, and are used to guide 
both sample partitioning and metric learning. Preliminary 
experiments using simple features  provide encouraging 
evidence that this approach can lead to significantly im-
proved clustering results compared to simple K-Means 
clustering, as well as clustering using a state-of-the art 
generic engine. 

Future work includes more experiments with larger 
test sets and more document types, and improvement of 
the metric learning formulation to enhance its robustness 
when faced with large number of clusters and noisy CL 
constraints. We would also like to explore other ways of 
generating constraints. For example, one possible source 
of ML constraints is to generate synthetic samples from 
the current ML labelled set using character distortion 
models, to further enrich the set of ML constraints. For 
some document collections, more CL constraints could 
potentially be generated by making use of  language mod-
els. Finally, after the initial semi-supervised clustering, 
how to present the results to most effectively solicit hu-

man feedback to further refine the clusters remains a chal-
lenging open research problem. 
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Fig. 4. Clustering performance with combined 
ML and CL constrains. 
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 # CL 
assignments 

# CL 
constraints 

# wrong 
constraints F-measure 

CL1 56 443 0 0.565 
CL2 84 1931 1 0.578 
CL3 86 2091 1 0.59 
CL4 127 5402 5 0.601 
CL5 133 5912 7 0.611 
CL6 137 6332 9 0.567 
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